
Evolving Locomotion for a Humanoid
Robot

Bachelor Thesis
im Arbeitsbereich Knowledge Technology, WTM

Prof. Dr. S. Wermter

Department Informatik
MIN-Fakultät

Universität Hamburg

vorgelegt von
Heye Vöcking

am
04.03.2013

Gutachter: Prof. Dr. S. Wermter
Dr. S. Magg

Heye Vöcking
Matrikelnummer: 6139373
Wiesendamm 135
22303 Hamburg

mailto:wermter@informatik.uni-hamburg.de
mailto:9voeckin@informatik.uni-hamburg.de
mailto:wermter@informatik.uni-hamburg.de
mailto:magg@informatik.uni-hamburg.de

Acknowledgments

Acknowledgments
Thanks to Sven Magg and Marc Bestmann for their DarwinFramework which
formed the basis for the software developed in this work. Furthermore, I want
to thank Tayfun Alpay, Ta Dejsuwannachai, Molly Brady-Martin, and Adam
Whitticker for their help and advice during the revision. And thanks to Rein-
hard Zierke for helping with technical issues regarding the Webots license server
etc. I also want to thank the whole Knowledge Technology group to be appre-
ciative of the discomfort with the simultaneous occupation of up to 16 computers
at the same time for experiments. And last but not least, I would like to thank
everybody I have talked to about this work for the help, the solace, and the fruitful
discussions that were sometimes necessary to get the project going again when it
was stuck.

III

Acknowledgments

IV

Abstract

Abstract
The purpose of this bachelor work was the evolution of artificial neural networks
to develop locomotion for the DARwIn-OP robot. The DARwIn-OP, henceforth
referred to as Darwin, is a 45cm tall humanoid robot which is used, amongst others,
in the RoboCup for robot soccer.

The main problem in robot soccer is creating a robust and fast locomotion.
Since a humanoid robot is a very complex system, it is difficult to handcraft a
robust walking algorithm. Furthermore, it needs to be adjusted by hand if the
floor or the weight distribution of the robot itself is changed.

One approach to automatically developing a walking algorithm is based on
biological evolution, by which a gradual improvement of individual solutions can
be achieved over many generations. Its parallel nature and pragmatic approach to
solve problems makes artificial evolution a well suited solution for this task. But
evolution too has certain difficulties which must be overcome. For example, tens
of thousands of experiments need to be performed in order to find a good solution
in a complex search space.

In this work, a system was developed, which exploits the concurrency offered
by evolution and performs the experiments in the Webots simulator on several
computers in parallel, thereby finding solutions in a reasonable amount of time.
It used an accurate replica model of the Darwin to evaluate the solutions, which
makes the transfer of a suitable solution to the real Darwin robot realistic.

This work focuses on the oscillating pattern generation within the artificial
neural network (ANN) and by external sources, as well as the impact of neurons in
the hidden layer of the ANN. The experiments have shown that an ANN is able to
generate a pattern without the use of a central pattern generator. Furthermore the
results indicate that at least four neurons in the hidden layer have to be present
for a locomotion to evolve.

V

Abstract

VI

Contents

1 Introduction 1
1.1 Motivation . 2

2 Related Work 5
2.1 The State of the Art in Locomotion 5

3 Approach 9
3.1 Evolution . 9
3.2 Evolutionary Algorithm . 10
3.3 Neural Networks . 14
3.4 Experimental Setup . 18
3.5 Execution of an Experiment . 23
3.6 Objective . 23

4 Results 25
4.1 Experiments . 25
4.2 Locomotion . 29

5 Discussion 33
5.1 Problems Encountered in the Tools Used 33
5.2 Fitness Function . 35
5.3 Comparing Objective and Outcome 38
5.4 Analysis of the Evolutionary Progress 40

6 Summary and Conclusion 43
6.1 Outlook . 44

A Nomenclature 45

B Additional Proof 47
B.1 Fitness Function Formula in Detail 47

C Fun Facts 49

Bibliography 53

VII

Contents

VIII

List of Figures

1.1 Position of the legs during a single gait cycle by the right leg (gray).
Figure taken from [30]. 2

3.1 The population visualized in the graphical user interface (GUI) of
the Client-Server Architecture while a tournament was performed
within the red square. 13

3.2 Structure of a neuron. Figure taken from [30]. 15
3.3 The connections are only exemplary; the network is fully connected

(except that the input neurons have no incoming connections and
the output neurons are not connected among themselves). 17

3.4 The GUI of the Webots simulator with a Darwin falling backwards. 19
3.5 The Darwin with all the servos controlled by the network (base

image taken from darwin-op.springnote.com). 20
3.6 The architecture of the server and the flow of operations. The blue

loop is the evolution, the green loop is the server. 23

4.1 Vibrating pattern of run E1_R4. 27
4.2 Input of the CPG, accelerometer, gyroscope, and output to the ser-

vos displayed in one graph (experiment E11_R1). The CPG input
was apparently suppressed and the robot kept standing still. 28

4.3 A pattern recurring over 20 seconds, causing the robot to perform
about 42 steps. 29

4.4 The path walked, this is highly optimized for distance traveled over
time. The initial point is at (0m, 0m). 30

4.5 The sequence in the graph, excerpt of 2.25 seconds, from −π
4
to π

4
. . 31

4.6 The sequence of a step, from 1.47 seconds to 1.85 seconds. Initial
tips of feet depicted with red lines. 31

5.1 A: Initial position (before execution). B: Walking one step, then
standing in a stable position (after execution). C: Falling over (after
execution). 36

5.2 Comparison of the human walking sequence with the evolved se-
quence. (Left figure taken from [30].) In the middle of the right
figure resides an alpha blending of all images merged together. . . . 40

IX

List of Figures

5.3 Max fitness and average fitness of run E16_R12, every datum is
equal to 56 performed tournaments. 41

X

List of Tables

3.1 Details of the parameters for the CTRNN neurons. 16

4.1 Overview of all experiments performed. E0 are the preliminary tests,
E1-E11 explorative experiments, and E12-E17 the final experiments
to analyze the impact of the number of neurons in the hidden layer. 26

4.2 The different input sources and controllable servos used in different
setups, as well as the CPG. Since each configuration was unique
regarding the use of neurons in the input or output layer, the sensors
and servos attached can be identified simply by the number of neurons. 27

XI

List of Tables

XII

Chapter 1

Introduction

Due to the fact that humanoid robots are built to operate in an environment
adapted to the human body, the research field of humanoid robotics is quite large
and complex. One of the most important problems is stable locomotion, which
enables the robot to move from one point to another without falling over or getting
stuck. A number of different techniques for locomotion exist. Wheels are very
popular because they are fairly easy to use on plain ground. But they are not
very versatile for other kinds of undergrounds or environments. Stairs for example
form obstacles for wheels in many man-made environments. Wheels haven’t been
evolved in nature; instead evolution has come up with different kinds of locomotive
means, such as the establishment of wings, fins, and legs. In legs, for example,
evolution has adapted a bipedal walking mechanism, which, considering the success
of the human race on the planet, is quite an efficient type of locomotion.

Since this work focused on artificial bipedal locomotion, it is appropriate to
examine human locomotion at first: A rhythm-generating system is located within
the spinal cord and the brain which generates a pattern used as basis. This sys-
tem is influenced by input from ’higher levels’ of the brain and receives sensory
feedback from the muscles, joints, and skin of the legs [30, 6]. The generated pat-
tern produces a cyclic movement of the legs, as described in Figure 1.1. How the
sensory information is transmitted and processed is explained in Section 3.3.

Following the human example robots in humanoid soccer leagues are forced to
use two legs for locomotion. This faces researchers with the challenge of devel-
oping algorithms for bipedal locomotion, which is the most important function in
humanoid robot soccer. If the robot can only move very slowly and unstably, and
has a tendency to fall over or an inability to change its position at all, the work
done by the other modules is meaningless because the robot is not able to fulfill
the required tasks.

In summary, we have a complex humanoid robot and need a solution that is:

Stable The robot does not get stuck and uneven or sloped ground does not affect
the locomotion to the extent of making the robot fall.

Robust The locomotion stays stable when facing unexpected incidents, like ob-
stacles on the ground or pushing from other robots.

1

Chapter 1. Introduction

Terminal
swing

Mid-
swing Swing

phase

Loading
response

Mid-
stanceStance

phase

Terminal
stance

Pre-
swing

Initial
swing

Initial contact

Opposite toe
off

Heel rise

Opposite initial
contact

Toe off

Feet adjacent

Tibia vertical

Figure 1.1: Position of the legs during a single gait cycle by the right leg (gray).
Figure taken from [30].

Fast While being careful to satisfy the requirements mentioned above the speed
of the locomotion should still be reasonable.

One way to achieve this is to handcraft a solution, but this takes a lot of manual
work. At this point handcrafted solutions have reached their limit because they
aren’t easily adaptable to changing morphology or environments.

1.1 Motivation

In order to overcome the handcrafting advantage of artificial was taken intelligence
which can be used to find solutions, even when no target solution (e.g. training
data) is available. The approach chosen in this work is artificial evolution. The
advantage of evolution is that the problem itself doesn’t need to be solved by
hand, rather one only needs a so-called fitness function, which rates the quality of a
solution. In addition, the execution of the required experiments can be parallelized
very well.

At first a domain and a search space which can be explored by an algorithm have
to be defined in order to automate the search for a walking gait. As others have
shown, see Section 2, parameters of an ANN can span up the search space which
can then be explored by an evolutionary algorithm. In this work that knowledge
was used to develop an automated system for evolving locomotion by using artificial
evolution and further researched, how suitable this approach is for the simulated
model of a real world robot.

2

1.1. Motivation

Training of ANNs is basically the approximation of a function which gets input
data, the sensors in our case and provides output data, the position of the servos.
This is basically the same approach as in human locomotion where the nerve cells
process the input from the receptors to decide how the muscles responsible for the
walking should contract.

There are different approaches to design and train ANNs. In this case, the ANN
was designed without information on how to solve the problem; it was simply
evaluated on how well it managed to fulfill the given task. The training was
performed with artificial evolution. As mentioned before it requires no training
data and the definition of the fitness function, with the exception of the difficulties
explained in Section 3.2.3, is basically straightforward. Furthermore, artificial
evolution can find solutions that one has never thought of1. Sometimes these are
very strange, but some might even have an advantage over handcrafted solutions.

This thesis will discuss the current state of the art technology in Chapter 2,
explain the approach taken and the tools used in Chapter 3. The experiments per-
formed and their results will be presented in Chapter 4. In Chapter 5 a conclusion
of the results will be drawn. Finally an outlook for future work will be given in
Chapter 6.1.

1Orgel’s Second Rule: “Evolution is cleverer than you are.”

3

Chapter 1. Introduction

4

Chapter 2

Related Work

Bipedal walking is a difficult task and has therefore been an active research field
for over 45 years now, starting with Miomir Vukobratovićs Zero-Moment Point
method [29], commonly abbreviated as ZMP, which was introduced in January
1968 at “The Third All-Union Congress of Theoretical and Applied Mechanics”
in Moscow. About 20 years later another method called limit cycle walking was
established following McGeer’s initial studies on passive dynamic walking [21]. In
this section the current state of the art technology as well as conclusions of other
scientific publications will be discussed.

2.1 The State of the Art in Locomotion

Research in the area of limit cycle walking was done amongst others by Garcia et
al. [9] and Goswami [11]. The limit cycle walking is an open loop concept, where
no sensor or feedback data is provided and solely a pattern generator is used to
establish a locomotion. It simply follows the pattern, which allows a faster and
more natural looking locomotion, but it allows unstable states, so if the robot stops
walking while being in an unstable state it would fall down. Since no feedback is
incorporated the concept needs an unchanging reliable environment. While many
teams in robot soccer are using this method, it does not include the feedback needed
for a stable walk. In soccer games the robot may be pushed by other robots which,
would require a countering action that cannot be accomplished when no external
information is fed into the walking system. In order to react to unexpected changes
a closed loop concept was used in this work, using the provided accelerometer and
gyroscope.

Work on setups using a central pattern generator (CPG) with and without
additional input from the robot’s sensors has been done by a number of researchers,
for example by Collins and Richmon [3], Kimura et al.[17, 18], as well as Ijspeert
on a simulated salamander [15]. Experiments using a CPG have been performed
for this work, but the results of these were sobering.

Bipedal locomotion is a field of interest in the commercial as well as scientific
sector. Publications for real world robots by research groups of companies include

5

Chapter 2. Related Work

Hondas Asimo [14] and Sonys SDR-4X [19], and on the other hand projects in
scientific institutions, like the KHR-3 [31] and the HRP-2 [16]. All these use the
ZMP-based control. The upper body can be thought of as a pendulum weight that
should be kept stable, which is accomplished using the ZMP method. In contrast
to limit cycle walking ZMP does not allow any unstable state, therefore the robot
could stop the walk at any time without falling down. The position of the ZMP
indicates whether the robot is stable or will fall over. It needs a planar ground
and sufficient friction to work. Furthermore, foot contact sensors are necessary for
the ZMP method. The Darwin model used does not offer foot contact sensors, so
the ZMP concept could not be used in this work. This makes the development of
a stable locomotion more complex. The approach in this work was to overcome
the missing foot contact sensors by using ANNs and the sensor data from servos,
accelerometer and gyroscope. Unstable states during locomotion were allowed
during evaluations of solutions in this work.

Besides ZMP and limit cycle walking there have also been some approaches
using ANNs as controllers. These are usually trained on simulated robots instead
of real robots. This is due to the high number of evaluations during the learning
phase. Experiments in simulated environments have been performed on numerous
setups: On constructed robots without an upper part of the body [26, 25, 27], with
quadruped [28, 22, 12] or even more legged robots [1]. Where Reil [26], Paul [25]
and Solomon [27] used the rigid body dynamics simulation software developer’s
kit of MathEngine. Tellez [28] used Webots (the same simulator as in this work),
which calculates the physics with the Open Dynamics Engine (ODE). The ODE is
also responsible for the physics calculation in the Simulators used by McHale [22],
Heinen [12], and Asif [1].

As Paul [25] has shown, it is possible to generate a gait without a hidden
layer, when input from additional sources is available. They used (for left and
right respectively): waist orientation, difference between waist and foot sagittal
position, waist height, and foot contact sensor. The robot used was a two legged
construct without an upper body part. In contrast to the simulated model, there is
only limited sensor information available in the work done for this thesis, because
the model of a real platform was used, which only provides the angle positions
of the servos and the gyroscope and accelerometer values in x, y, and z direction.
Additionally, the Darwin is a humanoid robot, hence not only the legs, but also
the whole body is simulated, which, due to the different morphology and higher
complexity of the platform, requires a completely different walking gait.

Ouannes et al. discussed in their work [24] that it is possible to evolve locomo-
tion for a humanoid robot. The robot they used is a theoretical model of which
no real world version exists. So it is unknown whether the robot used by Ouannes
would be able to walk in reality or could even be practically realized to match the
simulated model. Furthermore, when using a fictive robot, it is possible to adapt
its morphology to the needs of the neural network. None of this was possible in
this work, because the simulated model is bound to its real world counterpart.

An anticipated transfer of an evolved solution to a real robot was the goal of the
work done by Glette et al. [10]. They evolved locomotion as well as morphology of

6

2.1. The State of the Art in Locomotion

the robot, which is then produced to match the evolved model. Since the Darwin
model used in this work was already given, it was not possible to adapt it to the
needs of the evolution and the ANN.

In summary, the morphology of the platform used in this work is more complex,
because it is already predefined by the real robot. Therefore, the body has to offer
more space for the battery slot, the controller board etc. This also affects the weight
distribution. But not only the internal space requirements and the predefined
weight distribution add to the platform’s complexity; the joints also have to match
the servo requirements just like their real world counterparts do. This constricts
the free moving space considerably. All these limitations combined, make the task
of learning to walk a lot harder. In order to find out how a compensation for the
missing sensors and the given morphology can be achieved on a realistic platform,
the importance of pattern generation and number of neurons in the hidden layer
are analyzed in this thesis.

7

Chapter 2. Related Work

8

Chapter 3

Approach

In this chapter the tools, techniques, and the process of executing the experiments
is explained, as well as their parameters.

3.1 Evolution

3.1.1 Natural Evolution

Charles Darwin first described the theory of evolution in 1859 in his work The
Origin of Species [4]. It basically says that a population is adapting to the envi-
ronment by altering the traits of individuals over generations. The adaptation is
driven by the need for reproduction, so the traits of the individuals that manage
to reproduce themselves in high numbers are more likely to survive over many
generations.

Charles Darwin was not able to describe how the characteristics were passed
from parent to child, but a few years later in 1866 Gregor Mendel discovered laws
to describe this inheritance [23].

In fact these characteristics are encoded in a long string of deoxyribonucleic
acid (DNA), also called the gene, which can be found in every nucleus of every cell.
In 1953 Watson and Crick discovered how this genetic information is stored, and
since then the process of inheritance can be explained in very fine detail. When this
genetic information is passed from a parent to a child some of it is mutated, allowing
the child to have slightly different characteristics. If these are advantageous in the
competition with other individuals in a population, the child’s traits are more
probable to be passed on to even more children. Therefore, the weak individuals
have a higher probability of dying early and producing less offspring because they
are not able to compete with the fitter ones. This leads to a population with
individuals that are very well adapted to the environment.

Now inspired by Charles Darwin’s principle of Natural Selection [4], computer
scientists have developed an algorithm that optimizes a solution for a given prob-
lem. This is accomplished by artificially selecting the best performing individuals
in a population, which are then reproduced and mutated over many generations.

9

Chapter 3. Approach

In order to use evolution the problem has to be transformed into a certain way, so
it can be solved using a genetic algorithm in this case artificial evolution.

3.2 Evolutionary Algorithm

According to Eiben and Smith [7] the six most important components for an evolu-
tionary algorithm are the population, the definition of the individuals, the fitness
function, the selection mechanism, the mutation operators, and the survivor selec-
tion. These will be explained in detail in the following sections.

Artificial evolution is based on a genetic algorithm, which needs some kind of
gene where the information of its owner is stored. The requirements for this gene
are that every value that is mutable can be modified without breaking the code
and a small mutation changes the execution by a very small amount. The main
reason for the latter is that if a small change in the genetic code would cause
an unpredictable big change in the behavior, it would be impossible to gradually
improve the previous solution.

The benefits of using artificial evolution are that it tends to find solutions we
have never thought of. Furthermore, it is reusable for different problems, be it
a changed morphology, a different environment, or simply a slightly altered task.
But there are also certain drawbacks: A large number of experiments have to be
performed which requires a lot of processing time, and the fitness function has to
be designed very carefully to provide a smooth increase of fitness towards a good
solution, also called a local minimum.

3.2.1 Population

The population is the set1 that contains all current solutions of the evolution, all
currently alive individuals. An individual is immutable, it is the population that
changes when weak individuals are removed and replaced by the offspring of the
fitter individuals. For this work, the population had a fixed size during the whole
evolution. It was formed by individuals arranged in a two dimensional grid with a
size of 7× 8 and therefore hosting 56 individuals.

3.2.2 Individual

An individual carried a gene that held the structure of the ANN that was control-
ling the servos of the robot, so that the ANN was able to move them according to
the network output. In this work a gene (also called the genotype) was a one-to-
one mapping to an artificial neural network (the phenotype), hence an individual
was defined only by its network.

1The term set is not stringently equivalent to the mathematical term, because in very rare
cases two individuals can carry the same gene due to a coincidence of no loci being mutated or
two mutations creating the same gene which can happen in a discrete system.

10

3.2. Evolutionary Algorithm

The gene was represented by a long string of loci that stored all attributes of
the ANN. Each of these loci held information about one parameter of the ANN.
The information stored included the current value, a minimum and maximum for
the range of the parameter, and a Boolean field indicating whether this parameter
could be mutated or not. The different parameters will be explained in Section
3.3.1.

3.2.3 Fitness Function

The fitness function is the core of every EA. It defines the quality of a solution, so
it provides an absolute order over all genotypes. This necessitates a careful design
and in this case a lot of preliminary work including the criteria for the termination
of an evaluation.

Four different fitness functions have been used in the experiments, namely
F1, F2, F3, and F4. They differ in multiplication factors for the rewards and
in their termination criteria. The fitness values of two different fitness functions
are therefore not comparable with each other. The termination criteria for an
evaluation were:

1. The robot’s y position got below 17cm (for F1-F3), and 27cm (for F4).

2. The robot was killed by the circle-of-death, as will be explained in Section
3.2.3. (Only included in F3 and F4)

3. The time limit of 20 seconds (640 frames) was reached.

Criteria 1. and 2. were penalized by subtracting 0.74cm from the traveled dis-
tance.

The fitness function consists of five individually weighted parts, the general
form is:

fitness = ω1α + ω2β + ω3δ + ω4∆ + ω5τ

rewards for servo movements (α and β), rewards for distance traveled (δ and
∆), and the running time of the evaluation (τ).

A calculation of the ANN was done every 32ms, each of these calculations is
called a frame. During the execution data was collected, including the coordinates
of the robot and the servo angles measured every frame. The data was then
analyzed. In the following formulas N describes the number of frames, P ∈ {0, 1}
describes the penalty: 1 if penalized, 0 otherwise.

The treatment of the servo movements was quite complex. Basically if there
was continuous movement, β was 1. Depending on the efficiency of this movement,
α was 1.5 (small movement) and 0.0 (big movement). The details of the formulas
are listed under Appendix B.1.

∆ is the integrated distance:

∆ =
N∑
i=1

√
(xi−1 − xi)2 + (zi−1 − zi)2

11

Chapter 3. Approach

δ is the absolute distance after penalty subtraction:

δ =
√

(x0 − xN)2 + (z0 − zN)2 − P ∗ 0.74

τ is the logarithmic runtime:
τ = ln(N)

For F1:

fitness = 2.0 ∗ α + 2.0 ∗ β + 3.0 ∗ δ + 15.0 ∗∆ + 1.4 ∗ τ

For F2 - F4:

fitness = 2.0 ∗ α + 4.0 ∗ β + 3.5 ∗ δ + 19.25 ∗∆ + 1.4 ∗ τ

Circle-of-death

The circle-of-death (COD) was introduced to encourage the development of loco-
motion. It expands around the starting point with a velocity of 1

20
m/s. As soon as

the robots position was within this circles range, the experiment was terminated.
This criteria was checked every frame, after the simulation had been running more
than one second.

3.2.4 Tournament Selection

Different kinds of selection operators can be found in literature, which are applied
to remove less fit individuals from the population and fill their spots with offspring
created by the more fit individuals. The selection mechanism chosen in this work
is called tournament selection, because it does not operate on all individuals in
the population, but only on a small portion of it, four in this case. These four
individuals competed against each other in a tournament. While the evolution
was running, individuals were waiting for their evaluation. As soon as anywhere
on the population grid all individuals in a 2× 2 field had their fitness assigned, a
tournament was performed. The two winners replaced the two losers with mutated
offspring of theirs. In Figure 3.1 a visualization of a 7× 8 population can be seen,
while a tournament was performed within the red square.

The tournament selection was chosen over, for example ranking selection due to
the fact that tournament selection is independent of the rest of the population. This
decreased the waiting times for evaluated individuals, which arose if some of the
parallel evaluated experiments were delayed. Furthermore, premature convergence
was avoided, because a leading individual could only spread its offspring to a small
area in the population and it took longer for this solution type to spread through
the whole population.

12

3.2. Evolutionary Algorithm

Figure 3.1: The population visualized in the graphical user interface (GUI) of
the Client-Server Architecture while a tournament was performed within the red
square.

3.2.5 Mutation

A mutation operator was applied to one genotype and produced a slightly different
(mutated) version of it, which is considered a child or the offspring of the input
genotype (its parent). A gene can also be thought of as one position in the search
space, described by a vector with the length of all mutable parameters. The child
gene ~gc was created by copying the parent gene ~gp. Some of the entries of ~gc were
then modified by the mutation operator, as explained below. This modification
is in fact a translation from the position of ~gp to another position in the search
space. Through mutation, the population “explored” the search space spanned by
all mutable parameters.

For this work a mutator called ConservativeGaussMutator was developed. It
modifies any mutable locus with a probability of 0.2 using the ConservativeGauss-
Mutator. The grade of mutation depends on the allowed range of the loci value
and is randomly chosen to be performed in three separated discrete cases with
different probabilities. It adds with probability

P=0.6 a uniformly drawn number in the range from −1% to 1%.

P=0.2 a uniformly drawn number in the range from −4% to 4%.

P=0.2 a Gaussian drawn number.

The result was then shifted with a mirror effect at the range boundaries in case

13

Chapter 3. Approach

it has lain outside the loci’s range. The shifting process was applied as long as the
new parameter value v was outside the range.

• If it is smaller than the minimum, v = 2 ∗minimum− v.

• If it is greater than the maximum, v = 2 ∗maximum− v.

Due to the probability of modifying the value of a locus by a Gaussian drawn
number, it is basically possible to reach every location in the search space. Since
most locations in the search space evaluate to a low fitness, large jumps destroy
a good solution. In order to explore more conservatively the possibility of small
steps was chosen to be higher than that of big jumps.

3.2.6 Termination of the Evolution

In most runs the evolution ran into a local minimum, usually a stable position
where Darwin robot (3.4.2) walked one step and kept standing until being killed
by the circle-of-death. A run was stopped when seeing no oscillating pattern after
1000 tournaments had been performed. In some cases the experiments were run
longer for control sampling. When the algorithm evolved some kind of oscillating
pattern this usually indicated the possibility of evolving locomotion. In these
cases the fitness improvement lasted much longer than in the converging runs and
therefore the algorithm was run longer. Since the cases of a walk were rare and in
some cases improvements were made continuously even after an extensive amount
of tournaments, no good point to stop the experiment could be evaluated.

3.3 Neural Networks
As the name states, a neural network is basically a number of neurons, connected
to each other and thereby forming a network. The connections are established by
axons, long arms that connect through a synapse to the dendrite of another neuron
which transmits the information into the cell body. A neuron can be thought of as
a simple signal processor that can communicate with other neurons through their
connections. An illustration of a neuron can be seen in Figure 3.2

Neural networks form the nervous system and appear with high density in
brains and spinal cords of humans and animals. The human brain for example
is made up of about 85 billion neurons, connected with 1014 − 1015 axons [13].
These control, amongst others, the muscles in the legs. The information for con-
trolling the legs depends on the sensory information as well as a pattern generated
independently of it.

Sensory information is collected by the sense organs which stimulate the so-
called sensory neurons. They transmit information about positions of the joints,
the tension in the muscles, as well as sense of movement and balance to the brain.

The legs are controlled by so-called motor neurons. These arise in the brain,
most notably in the motor cortex and are called upper motor neurons. They pass

14

3.3. Neural Networks

Nucleus

Cell body

Dendrites

Axon of
neighbouring
neuron

Presynaptic
ending

Myelin sheath

Node of Ranvier

Axon

Figure 3.2: Structure of a neuron. Figure taken from [30].

the control signals down the spinal cord, to the peripheral areas where the lower
motor neurons are located.

Pattern generators are located within the spinal cord itself and in the brain.
The pattern and the signals from the upper motor neurons are passed to the lower
motor neurons, which are connected to the muscle fibers that contract according
to the transmitted control impulses [30].

The counterpart to the neural networks found in the nervous system are the bio-
inspired artificial neural networks (ANNs). An ANN consists of artificial neurons,
which are connected by weighted connections (as counterpart to the dendrites). It
can be thought of as a directed graph with vertices (neurons) and edges (connec-
tions). A neuron is basically a transfer function σ that gets an input signal x and
provides an output signal o = σ(x). This output signal is multiplied with weight
w of a connection (a floating point value) that can be positive or negative.

The neurons of an ANN are structured to form multiple layers, the first layer
contains the input neurons (like the sensory neurons) and the last layer contains

15

Chapter 3. Approach

Parameter Min Max Mutable Mutator

τ 1.0 100.0 true ConservativeGaussMutator
bias -1.0 1.0 true ConservativeGaussMutator
weight -5.0 5.0 true ConservativeGaussMutator

Table 3.1: Details of the parameters for the CTRNN neurons.

the output neurons (counterpart to the motor neurons). In between can be a
number of hidden neurons. The ANNs used in this work had zero to ten hidden
neurons.

The input for this ANN was made up of servo angle, pattern generator, and
sensor values. This information was scaled by the input neurons and distributed
to all neurons connected to them. In the neurons the information was computed
and then transmitted to other neurons until it reached the output neurons. The
positions of the servos were then modified according to the activation of the neurons
in the output layer.

Many different types of ANNs exist. For the experiments in this work a net-
work with recurrent connections was used, called continuous-time recurrent neural
network, or in short CTRNN.

3.3.1 CTRNN

Beer [2] describes the general form of a CTRNN neuron as follows:

.
yi = fi(y1, ..., yN) ≡ 1

τi
(−yi +

N∑
j=1

wjiσ(yi + θj)) i = 1, 2, ..., N

where y is the state of each neuron, τ is its time constant (τ > 0), wij is the
weight of the connection from the jth to the ith neuron, θ is a bias term, and σ(x)
describes the activation function, see 3.3.2. In Beers original description, there is
also a static input Ii for each neuron. But in the CTRNN used for this work, I is
replaced by the input from the neurons in the input layer, which are only used to
scale the sensor input and pass it to every non-input neuron in the network.

The aforementioned parameters are encoded in every individuals gene. They
can be mutated upon reproduction, see Table 3.1 for details.

CTRNNs are the ANNs of choice here, because according to Beer

“(1) they are arguably the simplest nonlinear, continuous dynamical
neural network model; (2) despite their simplicity, they are universal
dynamics approximators in the sense that, for any finite interval of
time, CTRNNs can approximate the trajectories of any smooth dy-
namical system on a compact subset of R′′ arbitrarily well; (3) they
have a plausible neurobiological interpretation, where the state y is

16

3.3. Neural Networks

often associated with a nerve cells mean membrane potential and the
output σ(y) is associated with its short-term average firing frequency”
[2].

This makes them very applicable for the problem stated in this thesis, because
they are simple, offer a plausible neurological interpretation, and can approximate
any dynamic system, which is needed to generate a walking gait.

The architecture of the networks used for the experiments is depicted in Figure
3.3. The input was coming from servo sensors, accelerometer, gyroscope, and sinus;
the output was interpreted as position values for each servo. Not all input and
output neurons were used in every experiment, they varied as described in Section
4.1.

Acc.x

Acc.y

Acc.z

Gyro.x

Gyro.y

Gyro.z

RShoulderPitch

LShoulderPitch

RHipPitch

LHipPitch

RHipYaw

LHipYaw

RKnee

LKnee

RAnklePitch

LAnklePitch

RShoulderPitch

LShoulderPitch

RHipPitch

LHipPitch

RHipYaw

LHipYaw

RKnee

LKnee

RAnklePitch

LAnklePitch

Hidden Layer Output LayerInput Layer

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Sinus

Sinus

Figure 3.3: The connections are only exemplary; the network is fully connected
(except that the input neurons have no incoming connections and the output neu-
rons are not connected among themselves).

3.3.2 Activation Function

To calculate the output of a neuron, the incoming connections are summed up,
where each weight is multiplied with the output value of the neuron at the origin
of its connection. The heart of every neuron is the transfer function, which is fed
with the sum of the incoming connections. The result (also called the activation
of the neuron) contributes to the input of all neurons connected to this neurons
outgoing connections.

In a closed loop setup the available input is from the sensors of the robot.
In order to generate some type of oscillating activation, which is needed for a

17

Chapter 3. Approach

continuous walk, the activation of some neurons has to be reciprocal to their input.
For this work, as will be discussed in detail in 5.3.1, the hyperbolic tangent function,
or short tanh function, was chosen to calculate the activation:

tanhx =
1− e−2x

1 + e−2x

Bias

The bias is basically shifting the activation function to the left or to the right and
makes it possible to get a certain activation for a certain input without having
to modify the steepness of the activation functions curve. At the beginning the
neurons in the output layer get an input of 0. This leads the neuron to output a
certain value, according to its bias. If this value would set the servo to an extreme
position, the robot falls over and the evaluation is aborted. Since the probability
for outputting just the servos initial position, which makes the Darwin stand up,
is small, most of the networks generated would fail. In order to avoid this the
bias was used to ensure that the output at the beginning of execution matches the
initial position. This approach was also discussed in the center-crossing paper [20]
by Mathayomchan and Beer.

For a servo i with an initial position of pinit ∈ [0, 1] (relative to the servos range),
the bias θi for output neuron oi with N incoming connections was calculated as
follows:

θi = −
∑N

j=0wij

2
− ln(

1

pinit
)− 1

So that the output generated by oi was exactly the initial position of the servo
for the zero-input:

fi(0, ..., 0) = pinit

3.4 Experimental Setup
The different parts needed for an experiment consist of the tools produced for this
thesis, as the Client-Server Architecture 3.4.4 and the DarwinFramework 3.4.3, as
well as tools produced by third parties, such as the Webots simulator 3.4.1 and
the Darwin model.

3.4.1 Webots Simulator

For the executions of the experiments the Webots simulator was used. It is a profes-
sional development environment for mobile robots initially written by Dr. Olivier
Michel at the Swiss Federal Institute of Technology in Lausanne, Switzerland in
1996. It is now maintained by Cyberbotics.

The interface of Webots and the environment used in this project can be seen in
Figure 3.4. Webots allows the design of realistic environments and complex robotic

18

3.4. Experimental Setup

setups, because it offers the modification of graphical and physical properties of
each object. It can therefore be used to simulate an experiment with a model of
the DARwIn-OP in a realistic way. It offers a variety of simulated sensors and
actuators to equip each robot2, e.g. cameras, servo motors (rotational and linear),
gyro, compass position, force, proximity, light, and touch sensors. The physics for
the simulation is calculated using the Open Dynamics Engine.

Figure 3.4: The GUI of the Webots simulator with a Darwin falling backwards.

In Webots the environment and robots are manipulated by controllers written
in Java for this work, which is natively supported by Webots. For the experiments
two controllers were used, one supervisor, which took care of tracking the Darwins
position and would terminate the evaluation in cases discussed in 3.2.3, and the
robot controller, which executed the neural network and connected the output
neurons to the servos of the Darwin. The environment chosen was a simple plane
with no obstacles perpendicular to the robots position. Its slope was 0◦, except for
two experiments that were performed on different sloped planes: {−0.5◦, 0◦, 0.5◦}.

3.4.2 DARwIn-OP

The platform the algorithm was trained on is the DARwIn-OP. DARwIn-OP stands
for “Dynamic Anthropomorphic Robot with Intelligence - Open Platform”. It is
a humanoid robot, designed by Virginia Tech and produced by the South Korean
company Robotis. It is used, amongst other challenges, for robot soccer, e.g. in
the RoboCup. In 2012, for example, it competed at the Robocup German Open in
Magdeburg as well as at the Robocup World Championship in Mexico when it was

2Cyberbotics Manual 2013, 01 2013.

19

Chapter 3. Approach

used by the “RoboCup AG” at the University of Hamburg. With its dimensions,
45cm tall, 2.8kg, and 20 degrees of freedom it satisfies the specifications for the
KidSize league of the Robocup rulebook. Furthermore, it is equipped with a 3-axis
gyroscope and accelerometer [8]. Figure 3.5 shows the Darwin with the servos used
in this work.

LShoulderPitch

LHipYaw

LHipPitch

LKnee

LAnklePitch

RShoulderPitch

RHipYaw

RHipPitch

RKnee

RAnklePitch

Figure 3.5: The Darwin with all the servos controlled by the network (base image
taken from darwin-op.springnote.com).

The model used for the experiments was modeled by Cyberbotics and is in-
cluded with the up to date version of the Webots simulator. It offers the complete
physical model of the Darwin, equipped with all actuators and sensors found in
the real Darwin, namely the 20 servos (therefore having 20 degrees of freedom),
the accelerometer(x, y, z), the gyro (x, y, z) all simulated with physics close to
reality, and for the sake of completeness, the LEDs, and the camera.

The robot has not been modified for the setup of the experiments, hence not
equipped with foot contact sensors. This makes the task of learning to walk a lot
harder, because many approaches by other research groups are based on the ZMP
method, which requires contact sensors. Furthermore, the robots morphology and
weight distribution is given, as explained before in Section 2 this brought in many

20

3.4. Experimental Setup

limitations, not only because the platform has to be realizable in the real world,
but also because the model cannot be changed in the simulator in order to adapt
it to the needs of the ANN for example.

But the great advantage of using a realistic model based on a real platform is:
The gap between the simulation and the real world evaluation is much smaller and
therefore more realistic to be overcome with a little handcrafting. Unfortunately a
portation of the evolved walking gait to the real platform is not within the scope
of this thesis.

In early experiments all servos were used as input sensors and could be con-
trolled by the ANN. This led to a very high number of mutable parameters and an
unnecessarily complex search space. To decrease the number of parameters, the
use of servos that are not involved in the walking process were removed, namely
the HeadPan and HeadTilt, the Elbows, and the ShoulderRoll servos. The Shoul-
derPitch was still kept for balance reasons.

3.4.3 The DarwinFramework

The whole implementation is based on the DarwinFramework written by the knowl-
edge technology group (WTM) and extended for the needs of this work. It offers
two different kinds of evolutions: standard evolution, using global selection op-
erators and tournament selection, using local selection operators, as explained in
Section 3.2.4. All individuals of this population can be arranged in a two di-
mensional grid to enable local tournament selection. These individuals and their
ANNs encoded in the genes can be saved to disk, including all information about
the experiment and other parameters. Supported are raw xml and zipped format,
which compresses the files to a 25th of their original size. The genes themselves
are versatile for any kind of data, it is only interpreted upon conversion to the
CTRNN, which makes the DarwinFramework not only applicable for this work,
but for many different purposes. The evolution process can be controlled through a
graphical user interface (GUI). It provides tools for controlling the computers used
for evaluation, the analysis of the experiments, and an overview of the population
and the development of the evolution.

3.4.4 Client-Server Architecture

There are a couple of reasons, why the development of a system for distributed
evaluation seems a good investment:

Firstly the Webots simulator cannot reset the scene to the initial position with-
out restarting the controllers. On the Cyberbotics website, it is stated3, that the
best way to do a reset of a scene is to save all data to disk, call the “revert()” func-
tion, and load the data again. This is necessary, because when the revert function
is called, all unsaved data is lost due to reset of the Java controllers. Since the
execution of one evaluation takes usually less than a second, this procedure sounds

3http://www.cyberbotics.com/dvd/common/doc/webots/guide/section6.3.html

21

http://www.cyberbotics.com/dvd/common/doc/webots/guide/section6.3.html

Chapter 3. Approach

inefficient. So the development of another solution, where the data is kept by
another program was evaluated.

Another reason was that, as mentioned before, the usage of artificial evolution
combined with tournament selection enables the parallel calculation of the fitness
for the individuals in a population. This is very convenient since a large number
of individuals had to be created and executed in order to get a decent result in the
end.

Since the University of Hamburg owns a license server that can be used by ten
different IP addresses in parallel, it was possible to distribute the tasks between
up to ten different computers, which can run multiple instances of Webots. A task
is simply an ANN to be evaluated. To realize the distribution, a server is started
that sends out tasks to a list of machines, the clients, that then execute the tasks
and return the fitness. In Figure 3.6 the architecture and the workflow is depicted.

The GUI is used to control the server and display the state of the evolution. The
server is given a list of machines that are setup for evaluation (having environment
variables set, the Webots simulator and the DarwinFramework installed). One
Machine can run an arbitrary number of Webots instances, usually the number
is chosen to be less or equal to the number of virtual cores. For each instance, a
unique MachineKey exists. Before the machine can evaluate any task they have
to be connected, meaning a secure shell protocol (ssh) tunnel back to the server
has to be opened.

When the evolution (blue loop) adds a pending task, the server (green loop)
starts the PendingTasksWorker, if it is not already running. The PendingTasks-
Worker itself then starts an instance on a Machine and puts a Handle along with
the MachineKey for it into the green loop. If all cores on all machines are oc-
cupied, the PendingTasksWorker simply waits. As soon as any instance notifies
the server (registering at the NetworkService) that it can evaluate another task,
a WebotsHandle is created and the ANN along with the experiment parameters
is sent as a serialized Java class over the network to the Webots instance. Note
that we have two different handles now: the WebotsHandle, handling an individual
that is being evaluated and the Handle for the instance responsible for the running
state of the Webots application. The Handle for the Instance is then put into the
running state (starting the ping protocol to check if the belonging Webots instance
is still running). Webots then executes the task, sends command-line output back
and answers to the ping protocol, until the execution is finished and the fitness
is calculated. A Handler takes care of the WebotsHandle and the Handle for the
instance. Now the computation of the fitness takes place on the remote computer.
The Handler waits for the result of the evaluation, which includes the fitness, the
tracking of the walked path, and the records of input and output values of the
network.

If the result is sent back, or the connection to Webots is lost, both handles are
returned. The Handler reverts the Webots instance or restarts it, if the connection
was lost. On return of the Handle, the MachineKey is available for another exe-
cution again. The Webots instance notifies the evolution about the result of the
evaluation. If the evaluation has failed, the individual is added as a pending task

22

3.5. Execution of an Experiment

again. Otherwise the individual gets assigned the calculated fitness. As depicted
in Figure 3.1 its square in the population is colored green (according to its fitness)
from now on. As soon as a tournament is performed, the two winners are copied,
mutated and added as a pending task on the server again.

If the Webots instance started by the PendingTasksWorker does not report back
after 40 seconds it is killed and restarted. The threshold was set to 40 seconds,
because that was twice the time the Webots simulator takes to start under normal
conditions.

Machine

Server

Evolution

[T] Ping
[T] SupervisorTask
[T] RobotTask
[O] Task
[O] Result

Client

[T] Pending
Tasks
Worker

[T] Network
Service

[C] PendingTasks

[C] RunningTasks

[C] FinishedTasks

put(machineKey,
 handle)

create(task, key)

start()

send(task)
ping()

receive(result)

create()

register(key)

get(key, handle)
[T] Starting
Instance
Watchdog

[C] StartingInstances

[C] RunningInstances

[C] AvailableMachines

kill()

Population

Mutator

collect()

evaluate()

mutate() get(task)

put(task, result)

New Population

Selector
select()

[T] Ping
[O] WebotsHandle

Handler

[C] Individuals

[C] Individuals

notify()

return(key)

[O] Task
[O] Result

WebotsHandle

assign()

revert()

GUI

Tabbed Pane

Figure 3.6: The architecture of the server and the flow of operations. The blue
loop is the evolution, the green loop is the server.

3.5 Execution of an Experiment
Basically an experiment can be thought of as a random initialized population,
consisting of a number of individuals, run with certain parameters as explained in
4.1. This population was the starting point for the evolution. The evaluation of the
individuals was started and continuously executed until terminated, as explained in
Section 3.2.6. As soon as a region with the dimensions of a tournament (starting
at an arbitrary point) on the grid was completely evaluated, a tournament was
performed.

3.6 Objective
The aim of this work was to evolve a locomotion for a humanoid robot, and there-
fore the expectations were to see the evolution converge towards a local minimum,
which would be close to the way humans walk. Roughly speaking, the idea was to
investigate a number of different configurations: Networks with a different number
of neurons in the hidden layer or no hidden layer at all, as well as using a CPG as
input besides the accelerometer and gyroscope sensors.

23

Chapter 3. Approach

3.6.1 Evolution of Oscillation

As previously mentioned in Section 1, human walking is based on a pattern that is
continuously repeated to move the legs in order to locomote. In order to imitate this
pattern, the activation of the output neurons has to oscillate in a certain way. The
shape of that pattern is unknown and it is the task of the evolution to generate it.
As well as the tendency to generate a continuously oscillating behavior, CTRNNs
also possess the possibility to generate a converging output. On convergence the
servos stay at the same position, ergo no continuous locomotion is possible. So the
first aim was to see a population evolve an internal pattern generator that could
eventually lead to some kind of continuous movement.

3.6.2 CPG

To see if providing an oscillating pattern from an external input at the beginning
could speed up the evolution, some experiments were to be performed with a
central pattern generator (CPG) connected to one input neuron. The setup for
this was as follows: The input from the CPG was fed into the sinus input neuron of
the network. In order to provide a modifier for the wavelength, the output of the
output neuron osinus was taken as input for the CPG. The pattern was generated
by a sinus function receiving the current frame counter i as input and the activation
of the output neuron osinus. So the input for the CPG-neuron was:

Isinus = sin(i ∗ 0.1 + osinus)

3.6.3 Hidden Layer

As described by Paul [25] it is possible in a certain setup to evolve locomotion
without using a hidden layer. But this might not be true for all configurations,
so for the setup used in this work, the question was: Is it possible to generate
an oscillation pattern without a hidden layer and if so, is it possible to evolve a
locomotion driven by this pattern? After failure to evolve any locomotion, the
question changed to: How many neurons in the hidden layer are necessary for the
development of locomotion?

24

Chapter 4

Results

96 runs within 17 different experiments have been performed, 143 runs including
the preliminary and testing experiments, which are listed but not analyzed here.

4.1 Experiments

Table 4.1 shows a detailed overview of the parameters and results of all experi-
ments. The abbreviations of the column titles are as follows:

E Number of the experiment.

Network Architecture of the ANN, specifically number of neurons in Input/Hid-
den/Output layer. See Table 4.2 for the sensors and servos attached to the
different input and output neurons.

Arms (used) Describes the angle of the arms as well as whether they were used
or not.

CPG States whether a central pattern generator was used.

hmin Is the minimum height of the robot. The measuring point lies in the center
of the robots torso.

COD Is the expansion velocity of the circle-of-death, as explained in Section 3.2.3.

Slope Determines whether or not the experiments were performed on leveled or
sloped (−0.5◦, 0◦, and +0.5◦) ground.

Fit The version of the Fitness function. F* is not a single functions but stands
for the developmental state of the fitness function, as explained in 3.2.3.

Succ The number of runs that successfully evolved a locomotion.

Ttl The total number of runs.

25

Chapter 4. Results

E Network Arms (used) CPG hmin COD Slope Fit Succ Ttl

0 16/5/10 Bent (X) 17cm 0m/s F* 5 47

1 16/5/10 Bent (X) 17cm 0m/s F1 0 6
2 16/0/10 Bent (X) 17cm 0m/s F2 0 7
3 16/5/10 Bent (X) *1 0m/s X F2 0 2
4 16/0/10 Bent (X) * 0m/s X F2 0 4
52 7/5/8 Bent X 17cm 0m/s F2 0 9
6 14/5/8 Bent 17cm 0m/s F2 0 1
7 16/5/10 Straight (X) 17cm 1

20
m/s F3 1 5

8 14/5/8 Straight 17cm 1
20
m/s F3 0 9

9 14/9/8 Straight 17cm 1
20
m/s F3 1 1

10 7/5/8 Straight X 17cm 1
20
m/s F3 0 1

11 7/0/10 Straight (X) X 27cm 1
20
m/s F4 0 2

12 16/0/10 Straight (X) 27cm 1
20
m/s F4 0 11

13 16/2/10 Straight (X) 27cm 1
20
m/s F4 0 7

14 16/3/10 Straight (X) 27cm 1
20
m/s F4 0 10

15 16/4/10 Straight (X) 27cm 1
20
m/s F4 1 4

16 16/5/10 Straight (X) 27cm 1
20
m/s F4 3 12

17 16/10/10 Straight (X) 27cm 1
20
m/s F4 1 4

Table 4.1: Overview of all experiments performed. E0 are the preliminary tests,
E1-E11 explorative experiments, and E12-E17 the final experiments to analyze the
impact of the number of neurons in the hidden layer.

When speaking about hidden neurons an abbreviation will be used: no hidden
neurons (H0), two hidden neurons (H2), three hidden neurons (H3) and so on. An
illustration of the network architecture of type H5 can be seen in Figure 3.3, H2 -
H10 are set up the same way, only with a different number of hidden neurons, H0
has only connections from the input layer directly to the output layer.

4.1.1 Oscillation

The first 19 runs (E1 to E4) were performed on H0 and H5 on even ground and
sloped ground. None of these runs led to any kind of locomotion. But in two of
the ten H5 runs a vibrating pattern was evolved, see Figure 4.1 for an example.

In most runs the evolved solutions tended to be very careful with movements

1No early termination.
2Due to bug this experiment was performed with an invalid number of output neurons, there-

fore it cannot be executed with the software anymore since the bug has now been fixed and an
invalid output vector size is rejected.

26

4.1. Experiments

Servo/Sensor Input 7 Input 14 Input 16 Output 8 Output 9 Output 10

ShoulderPitch X X

HipYaw X X X X X

HipPitch X X X X X

Knee X X X X X

AnklePitch X X X X X

Accelerometer X X X

Gyroscope X X X

CPG (Sinus) X X

Table 4.2: The different input sources and controllable servos used in different
setups, as well as the CPG. Since each configuration was unique regarding the use
of neurons in the input or output layer, the sensors and servos attached can be
identified simply by the number of neurons.

Figure 4.1: Vibrating pattern of run E1_R4.

and usually kept standing close to the initial position, instead of moving a servo
and therefore risking instability. In many of the runs, where an oscillating pattern
was evolved, the first servos that started to move continuously were the left or
right ShoulderPitch servos; hence it was suspected that these are used to evolve a
pattern generator without having to use servos that directly destabilize the stand.

This led to the assumption that in general the input of the servo angles was
used to generate a pattern. So a series of runs (E8 and E9) were performed
where input and output of the ShoulderPitch was removed, ergo the arms could

27

Chapter 4. Results

not be modified by the ANN at all. In both experiments, a locomotion evolved,
however this locomotion had a very slow velocity and an even less anthropomorphic
appearance compared to the techniques evolved in the experiments where the arms
were used. Furthermore, disabling the arms seemed to decrease the probability of
evolving a locomotion, so the arms were enabled again in later experiments. So,
apparently the arms were not required, but were helpful in generating a pattern.

4.1.2 CPG

In an attempt to reduce the search space (in experiment E53, E10, and E11) all
input of the servo sensors was removed and replaced by a central pattern generator
(CPG). But once again, in order to keep stability the networks tended to suppress
the input from the CPG so that the robot would not move away from its starting
point. This can be seen in Figure 4.2. Nothing even close to a recurring pattern
not to mention locomotion was evolved in any of the 12 runs, therefore no further
experiments with a CPG were performed from this point on.

Figure 4.2: Input of the CPG, accelerometer, gyroscope, and output to the servos
displayed in one graph (experiment E11_R1). The CPG input was apparently
suppressed and the robot kept standing still.

4.1.3 Hidden Layer

Based on the preliminary runs (E0), a locomotion only evolved with neurons in the
hidden layer. The interest grew into determining how important the neurons in
the hidden layer are in order to produce any kind of locomotion. A standardized

3Due to a bug in the software, that has been fixed, the E5 experiment does not provide an
output neuron for the oij value and cannot be executed because the number of output neurons
does not match the required size.

28

4.2. Locomotion

experiment configuration was defined, using the ShoulderPitch servos, but no CPG,
termination on position below 27 cm and a circle-of-death, with a propagation
velocity of 1

20
m/s (as explained in Section 3.2.3). This configuration was used to

perform runs with six different architectures, namely H0, H2, H3, H4, H5, H10.
Within experiments E12 to E14 (configurations H0, H2, and H3), 28 runs were

performed. None of these resulted in some kind continuous locomotion, but rather
in a step forward or backward and in certain cases a slow leaning over in order to
optimize the covered distance. In contrast to that, in the experiments E15 to E17,
five of the 20 performed runs evolved a locomotion.

4.2 Locomotion

In those cases, when a locomotion evolved, the steps were rather small and one leg
would not pass the other. Specifically we want to examine run 12 of experiment
16 (with 5 hidden neurons), because the solution found was highly optimized and
a good example of a successful locomotion. The optimization can be observed in
visualization of the tracked robot positions in Figure 4.4. The corresponding graph
with servo, accelerometer, and gyroscope input is shown in Figure 4.3.

Figure 4.3: A pattern recurring over 20 seconds, causing the robot to perform
about 42 steps.

Now we want to do a detailed analysis of the sequence of one step. It was per-
formed within the first seconds of the evaluation of the individual with the highest

29

Chapter 4. Results

Figure 4.4: The path walked, this is highly optimized for distance traveled over
time. The initial point is at (0m, 0m).

fitness in E16_R12. The view in the simulator (Figure 4.6) and the corresponding
part in the graph (Figure 4.5), is a recurring pattern, where the left HipPitch plays
the main roll.

1. Initial position.

2. Lifting the left foot off the ground.

3. Pushing it forward.

4. Both feet on the ground.

5. Lifting right foot a little.

6. Pulling right foot forward.

7. Going into initial position again.

30

4.2. Locomotion

Figure 4.5: The sequence in the graph, excerpt of 2.25 seconds, from −π
4
to π

4
.

Figure 4.6: The sequence of a step, from 1.47 seconds to 1.85 seconds. Initial tips
of feet depicted with red lines.

31

Chapter 4. Results

32

Chapter 5

Discussion

5.1 Problems Encountered in the Tools Used
Next to the problems encountered during the configuration of the parameters for
the experiments, there were also quite a number of technical issues. Prior to
being able to perform the experiments needed, the tools for execution have to be
developed. This was not always straightforward because a number of problems
have emerged out of the incorporation of many different tools, namely:

Network Communication Connecting to many computers in parallel, tunneling
through the firewall of the university, the hassle with ssh, network security
mechanisms, and the general problems that come with programming.

Webots and the Darwin Model Incorporation of the controllers and their mes-
saging system and the inability to run in headless mode and accessing the
servos and sensors of the Darwin model.

All these took a long time to be solved. This section is supposed to provide
possible solutions for future usage of these tools.

5.1.1 Network Communication

Java already offers a Transmission Control Protocol (TCP) socket implementation
that can be used fairly easily to send data. This all sounds very doable, but there
were some difficulties to overcome.

Webots itself has to be started by an external process, which can be done using
Secure Shell (ssh). At first ssh was used through Java’s runtime utilities, which
turned out to be a quite messy solution, since there were many instances of ssh
running in parallel, on the server as well as on the client machine that sometimes
caused hangups. Replacing external ssh with the Jsch library gave everything a
cleaner touch, but caused issues with strictHostChecking, “known_hosts” file, and
environment variables that were not loaded at the beginning. But these issues could
be overcome by disabling strictHostChecking and adding every machine manually
to the “known_hosts” file. Exporting the variables manually from the “.bashrc” file

33

Chapter 5. Discussion

using $ eval $(grep VAR_NAME .bashrc), and logging in on the graphical login
screen.

Jsch requires a graphical login. Which is very inconvenient for remote access,
which will be explained later on. A graphical login was also required for Webots,
since it needs a display to run on and cannot be forwarded due to a bug. This
is a big drawback, because a couple of reasons can lead to a state, where the
machine is not able to perform any further experiments. Furthermore, after a
varying amount of time (from one minute to two weeks) Webots does not start
anymore and gives one of the following error messages on startup: (1) No GTK
display could be found, (2) The MIT_MAGIC_COOKIE is invalid, or (3) The
OpenGL driver reports a failure. The only solution found for these problems was
a reboot of the machine. However, not only Webots caused problems, unrelated
issues like expiring Kerberos tickets (that should have renewed themselves, but
didn’t) appeared when least expected. These were solvable by logging out of the
session or restarting, but afterwards the required graphical login to the machine
can only be done manually by someone present on the machine.

Currently the best solution for the communication via the network works in
the following way (where S is the computer on which the server is running): A
reverse ssh tunnel is established by S to each client machine. Every application
on the client machine is now able to use this tunnel to communicate with the
server running on S, as if the server would be running locally on the machine itself.
The only requirements for S is, that it has to be connected to the Internet and to
the “Fachbereich Informatik - Virtual Private Network” (short FBI-VPN), while
the physical location of S can reside anywhere in world. Through this tunnel,
a TCP/IP-connection is established over which messages can be sent in packets.
These packets carry for example the serialized ANNs or the calculated fitness for
an individual.

In order to be able to control the execution of the experiments a GUI for the
Client-Server Architecture was developed. It offers an overview of the whole execu-
tion process, including the machines, every instance of Webots, every experiment
performed, the whole population, and the progress of evolution. Furthermore, it
is possible to change the distribution of tasks to different machines in case some
machines should fail during a run.

5.1.2 Webots and the Darwin Model

In order to communicate with the simulation environment of Webots so-called con-
trollers are used. These are written in Java for this work and have to be compiled
by the Webots Java compiler. But in order to keep the most pats of compilation
within the DarwinFramework the controller classes in Webots solely initiate a new
class residing in the DarwinFramework that handles the real work. In order to ac-
cess the sensors and servos, a RobotController is needed. This RobotController can
only control the robot, while another controller (the SupervisorController) has to
be used to modify the scene or get position information about the robot. These two
can communicate via a messaging system that was setup with the same interface as

34

5.2. Fitness Function

the inter computer communication. This messaging system is used to transmit for
example the whole ANN serialized as a java object from the SupervisorController
to the RobotController for evaluation.

During and after execution Webots tries to write to four different files: “.webot-
src”, “.webotsrc.swp”, “webots.log”, and “webotsOgre.log”, which are all located in
the home directory. This leads to conflicts when multiple instances try to write to
the same file at the same time. To get around this the environment variable HOME
was modified to point to a unique directory in “/tmp” for each instance. These
directories were deleted after the Webots instance was killed.

Webots would sometimes get stuck or simply crash. In order to avoid a deadlock
of some Handlers in the server when waiting for the result of an evaluation that, due
to a crash in Webots, would never be sent back, a ping protocol was introduced.
It sends a ping and waits for a pong response until it sends a ping again. If a
timeout was reached (no response for more than 20 seconds), the individual was
set into the pending state again, the Webots instance was killed and a new Webots
instance was launched.

But if the instance got stuck on shutdown it might try to write to one of the
files that resided in a deleted directory. In those cases Webots displayed an error
message on the graphical screen. While this message is displayed, the process is in
“D” state, which means, that it cannot be killed by any command, not even “kill
-9”. So the computer has to be accessed manually again, to close this error dialog.

As previously mentioned, the University of Hamburg owns a license server.
Webots requires a connection during the whole execution time to this server. If
the server is not responding or not accessible Webots would not start or continue
the execution and would display an error message that has to be closed manually.

5.2 Fitness Function

The fitness function is a very important part of any evolutionary algorithm and
requires a lot of careful tuning. In this section the successive improvement of the
fitness function will be explained by combining the observed behavior and the
actions taken to fight certain problems.

5.2.1 Development of F*

F* denotes the fitness function in the developmental stage during the preliminary
experiments. Thus all experiments performed with this ever-changing fitness func-
tion are not comparable to each other. This is the reason why it does not have a
number assigned to it.

The fitness of an individual is calculated, after the evaluation is over, based
on the actions taken during evaluation. Therefore, a termination criterion for an
evaluation must be defined at first. Since the space the robot could travel was not
limited, the first termination criterion of the evaluation was time. After 20 seconds
the evaluation was terminated.

35

Chapter 5. Discussion

So the initial fitness function (first implementation of F*) simply rated the
overall distance (measured in x and z direction) traveled away from the starting
point within 20 seconds. The robot’s position is defined by the center of its torso.
As depicted in Figure 5.1, this fitness function did not describe the robots action
well, because a small step did not give a good fitness compared to falling down.

Figure 5.1: A: Initial position (before execution). B: Walking one step, then
standing in a stable position (after execution). C: Falling over (after execution).

A fallen down robot was not able to get up, so when falling down, the robot
could only crawl to improve its fitness. This was not desirable, because crawling is
not allowed in humanoid soccer. In order to penalize this action, the experiment
was terminated as soon as the robots height was below a certain level hmin and two
penalties were applied: The 0.74cm (twice the robots initial height) was subtracted
from the overall distance traveled and the evaluation was terminated. In order to
reward robots for not causing an early termination, the runtime τ of the experiment
was also taken into account when rating the fitness. hmin was 17cm (half of the
robots height) for the fitness functions F1-F3 and for the last experiments increased
to 27cm because sometimes the robot would fall but keep its chest above 17cm by
pushing itself up with the arms.

Now the evolution was more likely to evolve solutions that avoided falling down
during execution time. But this led often to a solution, where the robot stood,
and waited until the experiment was over in order to get the time reward τ . In
other words, the activation of the neurons converged and the CTRNN got into an
equilibrium state after the first seconds of execution.

Important for locomotion is a pattern that causes the servos to move con-
tinuously. To make an oscillating pattern more attractive, a further reward was
introduced: β, continuous movement of the servos. Therefore, the movement of
the servos was recorded and integrated at the end. Now another very popular
minimum was found, standing at the initial position and waiting for the end of
execution to move the servos as much as possible in the last second so that the
robot would fall or jump but not get below 17cm before the evaluation had ended.

In order to decide whether the movement was indeed over time, the analysis
was divided into six equally long time pieces, β0 to β5. If the integrated value of
any timepiece was below 0.25◦, the reward of 1.5 was not given. But at first the
robot would simply stay and move its arms to get movement over time. So the

36

5.2. Fitness Function

analysis was based solely on the knees because the robot was not able to stay at
the same spot when moving the knee servos.

After the introduction of this rule, the robots started to move their knee servos
as much as possible, which is not very efficient. Overall it would be preferable,
if all servos were moved as efficiently as possible. This led to the introduction
of α which gave a reward reciprocal to the integrated value scaled to the interval
[0, 1.5]. But now the solutions standing at one spot were rewarded for their “very
efficient” use of the servos. So the reward for efficient movement was only given,
when the integrated servo values of the knee where continuous.

5.2.2 F1-F4

This all helped to reduce the amount of runs with no developed locomotion. But
further tuning was performed after experiment E1 did not produce any solution
with locomotion. In order to balance the reward a little more towards walking, the
individual weights for some parts were changed in F2.

Continuous movement (β) raised from 2.0 to 4.0.

Absolute walking distance (δ) raised from 3.0 to 3.5.

Integrated distance (∆) raised from 15.0 to 19.25.

Not knowing that the number of hidden neurons was an important factor in
evolving locomotion, the results of the next couple of experiments were disappoint-
ing, because none of them did develop any kind of locomotion behavior. Almost
all of the experiments resulted in standing solutions, some of them jumping away
at the end. Indeed only three of those experiments had the correct preconditions,
more than three neurons in the hidden layer. This led to further tuning of the
fitness function, thus F3 was introduced. It featured a new instrument to force
individuals to walk: an expanding circle-of-death. It killed the individual, as soon
as it came within this circle. The expansion speed was set to 1

20
m/s, so that the

radius of this circle was one meter at the end of the experiment. Furthermore, the
arms were set to be straight instead of bent during execution.

This produced two runs resulting in locomotion. But still some runs ended with
standing individuals or individuals that managed to push themselves up with their
arms, staying above the 17cm mark. So again the fitness function was changed and
F4 was created. The only difference being that the minimum height was increased
from 17cm to 27cm.

When looking at the results produced so far, no runs with no hidden neurons
resulted in locomotion. A suspicion arose, that the number of neurons in the hidden
layer played an important role. So finally experiments with different numbers of
hidden neurons were performed with no other parameters changed. These were
the last experiments with F4 being the final fitness function. And indeed, four of
the 20 experiments resulted in locomotion. This indicates that the probability to

37

Chapter 5. Discussion

generate a solution with locomotion is somewhere around 25% using this fitness
function and more than three hidden neurons in the neural network.

After all experiments had been performed, a bug in the fitness function was
found. This bug does not affect the results, but it makes the calculation of the
integrated distance (∆) implausible. The distance is taken in intervals of half a
second, but measured only to the last frame. Therefore, the reward erroneously is
given, when the robot is only moving from one point to another, but not actually
moving away from the point where the last measurement was taken. The inten-
tion of measuring only two times a second was to avoid giving a reward in this
kind of situation. It might be possible that even better results are achieved, with
experiments performed using F5, where the bug will be fixed.

5.3 Comparing Objective and Outcome

The objectives were to evolve oscillation, test if the integration of a CPG would
introduce further improvement, compare the impact of neurons in the hidden layer,
and finally develop a locomotion. First of all, it was discovered, that the choice
of the activation function has a great impact on the development of oscillating
patterns.

5.3.1 Activation Function

A popular transfer function for ANNs is the sigmoid function:

f(x) =
1

1 + e−x

But during early test phases it was discovered that the activation of the CTRNN
always converged to an equilibrium state after a few seconds. As said before, an
oscillating pattern is needed, because a CTRNN with converging output causes
the servo position to stay at a certain angle, so the robot cannot move forward.
This is the reason for choosing the tanh function over the sigmoid function.

As Kamps et al. [5] pointed out, the standard sigmoid neuron is the more
biologically plausible approach, but with an input of 0 it has an activation around
0.5, which tends to increase general network activation and can therefore lead to
convergence of high activations. They found out that an anti-symmetric smashing
function

f(x) =
2

1 + e−x
− 1

works better because the activation is 0 for f(0). The hyperbolic tangent is a more
natural function because it does not have to be stretched and shifted and is very
close to the anti-symmetric smashing function. It can be deduced in the following
way:

tanhx =
sinhx

coshx
=
ex − e−x

ex + e−x
=
e2x − 1

e2x + 1
=

1− e−2x

1 + e−2x

38

5.3. Comparing Objective and Outcome

The experiments performed after the transition to the tanh function have shown
that an oscillating pattern is more easy generated by an ANN using neurons with
the tanh function than the sigmoid function.

5.3.2 CPG

As shown in the results, the input from the external pattern generator is ignored
after a small number of generations. It is possible that at early stages of evolution
the fitness function forces the individuals to keep stability, so it becomes impos-
sible to incorporate the pattern while no stable step is developed. Therefore, the
individuals that have a stable standing pose get better rewards and the evolution
tends to ignore the pattern input in favor of stability.

5.3.3 Hidden Layer

The CTRNNs used in this work have shown that they can evolve rhythmic behavior
on their own under certain circumstances. The number of neurons in the hidden
layer is apparently a crucial point for an oscillating pattern which is required for
continuous locomotion. This leads to the conclusion that the internal recurrent
connections are crucial for the development of a recurring pattern. So far no upper
limit of hidden neurons has been found and it is unclear if it exists. Unfortunately
the time for this work is limited and no further experiments on this subject could
be performed, so that no explanation or proof for this indication can be delivered
here.

5.3.4 Locomotion

The overall objective of this work was to evolve some kind of walking behavior
similar to human walking since this seems to be a very effective method of move-
ment (a local optimum). So a good result was expected to show similar behavior
in the simulator. One has to take into account that human walking is learned
by falling down and getting back up again. The learning is not done by random
mutation but some kind of feedback, collected from falling down. Furthermore,
the human walking apparatus offers much more detailed “sensor information” such
as pressure on the feet and joints. Another impact was the limitation of sensors
and available servos as well as the absence of passive controllers such as spring
connections between joints.

When seeing robots walk in humanoid soccer leagues the walking motion is not
very anthropomorphic, but rather jerky and apathetic. Therefore, the expectation
that the results may differ was formed.

In cases, where some kind of locomotion evolved the behavior was in an upright
position and rather stable, but unfortunately not humanlike. But the gaits that
evolved reminds one of the techniques used in some martial arts (e.g. Wing Chun
which is a gung fu style), which are developed with maximum stability in mind.
So it is not surprising that a good local minimum would look like this kind of

39

Chapter 5. Discussion

walk. For a detailed comparison of human walking and the evolved locomotion see
Figure 5.2.

Terminal
swing

Mid-
swing Swing

phase

Loading
response

Mid-
stanceStance

phase

Terminal
stance

Pre-
swing

Initial
swing

Initial contact

Opposite toe
off

Heel rise

Opposite initial
contact

Toe off

Feet adjacent

Tibia vertical

Figure 5.2: Comparison of the human walking sequence with the evolved sequence.
(Left figure taken from [30].) In the middle of the right figure resides an alpha
blending of all images merged together.

The scope of this thesis is unfortunately not large enough to include all different
variations of parameters or also to add other techniques such as different servo
connections using springs and such. So a lot of possible branches in the search
space have been cut off and therefore it might be possible that no humanlike
locomotion lies within the given search space.

Another problem could be that a creature with the Darwins morphology and
degrees of freedom is simply not able to walk like a human.

Velocity

The velocity of the walks was quite reasonable. No assumption about the expected
speed was made prior to the results, but the gaits of humanoid robots in the KidSize
league are usually not very fast. In this work the robots walked as much as 4.62m
of absolute distance (E17_R5) and an integrated distance of 5.65m (E15_R4)
within 20 seconds. It is very likely that these speeds cannot be reached in the
real world, because they are optimized to the simulated physics. Furthermore, the
servos would probably overheat and wear down fast. But it is still a remarkable
speed given the size of the robot and the limitations of the platform due to the
realistic model of the Darwin.

5.4 Analysis of the Evolutionary Progress
When looking at the fitness graphs recorded over time, one can see the expected
appearance of a normal evolution: A big step upward followed by optimization

40

5.4. Analysis of the Evolutionary Progress

over many generations, resulting in a logarithmic looking graph. But at some
point even an extensive amount of evaluations did not lead to a better solution.
This happened much quicker in cases when the robot did not evolve a walk, but
rather only one step, or jumped from the starting point and therefore fell down.
When a gait was evolved that enabled the robot to move away from the starting
point at a constant speed, the evolution improved over a longer period of time and
usually with an increasing amount of larger steps. In some cases the early individ-
uals showed a rather staggering walk, which would improve over many generations
to a straight directed walk with much higher fitness levels. A good example of this
is E16_R12 where oscillation after 560 tournament and locomotion after about
1200 tournaments evolved and where improvement was still made after 8560 tour-
naments. A graph of the max fitness and average fitness can be seen in Figure
5.3.

Figure 5.3: Max fitness and average fitness of run E16_R12, every datum is equal
to 56 performed tournaments.

41

Chapter 5. Discussion

42

Chapter 6

Summary and Conclusion

In summary: 17 different experiments have been performed, where seven different
walks have been evolved. When including the preliminary experiments, more than
one million individuals have been evaluated for this work, with most of these dying
in the process of evolution.

1. Within this work, a Client-Server Architecture offering a GUI was developed
in order to control the DarwinFramework. This provides genetic algorithms
of genes to evolve by mutating them within a population of individuals.
These genes can be converted to ANNs that can be evaluated remotely and
in parallel with Webots on the Darwin model and saved to be loaded and
evaluated further at a later point. The framework is versatile; and it is
possible to evolve a kick or a stand up animation with small effort.

2. This framework has the capability to develop locomotion for a complex hu-
manoid robot, with a success rate of 25% in experiments E15 to E17. The
parameters needed to acquire this rate have been defined in this thesis as:

(a) The final fitness function (F4).

(b) Input from accelerometer, gyroscope, and ten servo sensors as described
in Section 4.

(c) Four or more neurons in the hidden layer.

(d) Control of ten servos also discussed in Section 4.

3. The results indicate that the number of neurons in the hidden layer is cru-
cial because experiments with three or less neurons did not develop a single
locomotion within 41 runs.

4. Furthermore, the tanh function was found to deliver much better results
when focusing on oscillation compared to the sigmoid function.

5. An artificial CPG is not helpful for the pattern generation process. In suc-
cessful cases a pattern is generated within the network itself.

43

Chapter 6. Summary and Conclusion

6. Furthermore: Webots is not suited for remote execution of experiments.
However, within this work solutions for the problems caused by Webots have
been discussed so that it is possible to control it by a remote server.

6.1 Outlook
In future experiments, the optimal number of neurons in the hidden layer can be
evaluated, either by setting the number of neurons by hand, or by allowing the
addition of neurons during mutation. Another interesting question is: is it really
impossible to generate a walk with three or less neurons in the hidden layer or is
it simply just that the probability is therefore much decreased? An answer to this
question would be useful and furthermore, an evaluation of what changes in the
setup are needed to enable ANNs with less hidden neurons to develop a walk could
lead to interesting findings.

The fact that the CPG was ignored raised some important questions: could the
reason for this be the fitness function? It is possible that it denies paths through
the search space leading to a stable locomotion when using a CPG. It may be
required to restructure the concepts and aims of the developed fitness function,
which requires some effort but it could lead to even better and faster developing
results because as said before: a recurring pattern is crucial for locomotion.

Fixing the bug in the fitness function mentioned in Section 5.2.2 and performing
further experiments with the fixed version. Furthermore, since the fitness function
is rather complex, it might be possible to achieve equally good results when leaving
out some terms, e.g. the reward for continuous movement, which is now indirectly
forced by the expanding circle-of-death.

Also a different kind of mutation operator could be introduced, for example
crossover recombination.

It may also be possible to perform incremental evolution, where the fitness
function changes over time, so at first a stepper is evolved which is then further
evolved with a fitness function rewarding distance walked. And after a stable walk
has been evolved the focus could be shifted to walk along certain waypoints for
example.

Furthermore, an evolved walk can be ported to the real platform in order to
see how well it performs outside the simulator. In relations to simulators, another
interesting question would be: how does the algorithm run in a different simulator
with a different physics engine?

44

Appendix A

Nomenclature

Used terms in alphabetical order:

ANN Artificial Neural Network

COD Circle-of-death (used in F3 and F4), see also 3.2.3 and 5.2.2.

CPG Central Pattern Generator

CTRNN Continuous-Time Recurrent Neural Network

Darwin DARwIn-OP

DARwIn-OP Dynamic Anthropomorphic Robot with Intelligence - Open Plat-
form

DNA Deoxyribonucleic Acid

Ex Where x ∈ {0, ..., 17}, notation for experiment x.

Fx Where x ∈ {∗, 1, 2, 3, 4}, notation for Fitness Function of version x. F* denotes
work-in-progress version, see also 5.2.1 and 5.2.2.

GUI Graphical User Interface

Hx Where x ∈ {0, 2, 3, 4, 5, 9, 10}, notation for network with x neurons in the
hidden layer.

Ry Where y ∈ {0, ..., 47}, notation for run y, therefore Ex_Ry denotes run y of
experiment x.

IP Internet Protocol

TCP Transmission Control Protocol

ODE Open Dynamics Engine

SSH Secure Shell

45

Anhang A. Nomenclature

FBI-VPN “Fachbereich Informatik - Virtual Private Network”

WTM Knowledge Technology Group

ZMP Zero-Moment Point

46

Appendix B

Additional Proof

B.1 Fitness Function Formula in Detail
Detailed formula for the treatment of the servo movement in the fitness function.

Where Nf is the number of frames, Ns is the number of servos and k is the
index of the knee servo. α describes the efficiency of servo movements, β describes
the continuity of servo movements.

βi =

Nf∑
j=i

|servo(i∗6+j−1),k − servo(i∗6+j),k| ∗ 2, for i ∈ {1, ..., 6}

if β0 to β5 are all above 0.25◦ then:

αtmp =

Nf∑
i=1

Ns∑
j=1

|servo(i−1),j − servoi,j|

α = max(0, Nf ∗
300− (αtmp − 1.5)

300 ∗ 640
)

and
β = 1

else:
α = 0

β = 0

47

Anhang B. Additional Proofs

48

Appendix C

Fun Facts

• 14 locomotions evolved in six different experiments.

• 17 different experiments were performed, plus preliminaries.

• 142 runs performed.

• About 16k phrases in this thesis.

• More than 25k lines of code in Java all in all.

• More than 80k lines of code were written, more than 65k removed specifically
for this thesis, including configuration and GUI files.

• More than one million individuals were created.

• About five gigabyte consumed by saved populations, compressed to about
210 megabyte.

49

Anhang C. Fun Facts

50

Bibliography

[1] U. Asif and J. Iqbal. A comparative study of biologically inspired walking gaits
through waypoint navigation. Advances in Mechanical Engineering, 2011,
2011.

[2] R.D. Beer. On the dynamics of small continuous-time recurrent neural net-
works. Adaptive Behavior, 3(4):469–509, 1995.

[3] James J Collins and SA Richmond. Hard-wired central pattern generators for
quadrupedal locomotion. Biological Cybernetics, 71(5):375–385, 1994.

[4] Charles Darwin. On the Origin of Species. John Murray, 1859.

[5] M. de Kamps and F. van der Velde. Neural blackboard architectures: the
realization of compositionality and systematicity in neural networks. Journal
of neural engineering, 3(1):R1, 2006.

[6] Jacques Duysens and Henry WAA Van de Crommert. Neural control of loco-
motion; part 1: The central pattern generator from cats to humans. Gait &
posture, 7(2):131–141, 1998.

[7] A.E. Eiben and J.E. Smith. Introduction to evolutionary computing. springer,
2007.

[8] Daniel D. Lee Seung-Joon Yi Stephen McGill Yida Zhang et al. Robocup 2011
humanoid league winners. Technical report, Autonomous Intelligent Systems,
Computer Science, Univ. of Bonn, Germany GRASP Lab, Engineering and
Applied Science, Univ. of Pennsylvania, USA RoMeLa, Mechanical Engineer-
ing, Virginia Tech, USA, 2011.

[9] Mariano Garcia, Anindya Chatterjee, and Andy Ruina. Speed, efficiency,
and stability of small-slope 2d passive dynamic bipedal walking. In Robotics
and Automation, 1998. Proceedings. 1998 IEEE International Conference on,
volume 3, pages 2351–2356. IEEE, 1998.

[10] Kyrre Glette and Mats Hovin. Evolution of artificial muscle-based robotic
locomotion in physx. In Intelligent Robots and Systems (IROS), 2010
IEEE/RSJ International Conference on, pages 1114–1119. IEEE, 2010.

51

Bibliography

[11] Ambarish Goswami, Bernard Espiau, and Ahmed Keramane. Limit cycles
and their stability in a passive bipedal gait. In Robotics and Automation,
1996. Proceedings., 1996 IEEE International Conference on, volume 1, pages
246–251. IEEE, 1996.

[12] Milton Roberto Heinen and Fernando Santos Osorio. Applying genetic algo-
rithms to control gait of simulated robots. In Electronics, Robotics and Au-
tomotive Mechanics Conference, 2007. CERMA 2007, pages 500–505. IEEE,
2007.

[13] Suzana Herculano-Houzel. The human brain in numbers: a linearly scaled-up
primate brain. Frontiers in Human Neuroscience, 3(31), 2009.

[14] R. Hirose and T. Takenaka. Development of the humanoid robot asimo. Honda
R&D Technical Review, 13(1):1–6, 2001.

[15] Auke Jan Ijspeert. A connectionist central pattern generator for the aquatic
and terrestrial gaits of a simulated salamander. Biological cybernetics,
84(5):331–348, 2001.

[16] Kenji KANEKO, Fumio KANEHIRO, Shuuji KAJITA, Hirohisa
HIRUKAWA, Toshikazu KAWASAKI, Masaru HIRATA, Kazuhiko AKACHI,
and Takakatsu ISOZUMI. Humanoid robot hrp-2. IEEE 2004: International
Journal of Humanoid Robotics, 2:1083–1090, 2004.

[17] Hiroshi Kimura, Seiichi Akiyama, and Kazuaki Sakurama. Realization of
dynamic walking and running of the quadruped using neural oscillator. Au-
tonomous Robots, 7(3):247–258, 1999.

[18] Hiroshi Kimura, Yasuhiro Fukuoka, and Ken Konaga. Adaptive dynamic
walking of a quadruped robot using a neural system model. Advanced Robotics,
15(8):859–878, 2001.

[19] Y. Kuroki, M. Fujita, T. Ishida, K. Nagasaka, and J. Yamaguchi. A small
biped entertainment robot exploring attractive applications. Robotics and
Automation, 2003. Proceedings. ICRA’03. IEEE International Conference on,
1:471–476, 2003.

[20] B. Mathayomchan and R.D. Beer. Center-crossing recurrent neural networks
for the evolution of rhythmic behavior. Neural Computation, 14(9):2043–2051,
2002.

[21] Tad McGeer. Passive dynamic walking. The International Journal of Robotics
Research, 9(2):62–82, 1990.

[22] G. McHale and P. Husbands. Gasnets and other evolvable neural networks
applied to bipedal locomotion. From Animals to Animats, 8:163–172, 2004.

52

Bibliography

[23] G. Mendel. Versuche über pflanzenhybriden. Verhandlungen des natur-
forschenden Vereines in Brunn 4: 3, 44, 1866.

[24] N. Ouannes, N.E. Djedi, Y. Duthen, and H. Luga. Gait evolution for humanoid
robot in a physically simulated environment. Intelligent Computer Graphics
2011, 374:157–173, 2012.

[25] C. Paul. Sensorimotor control of biped locomotion. Adaptive Behavior,
13(1):67–80, 2005.

[26] T. Reil and P. Husbands. Evolution of central pattern generators for bipedal
walking in a real-time physics environment. Evolutionary Computation, IEEE
Transactions on, 6(2):159–168, 2002.

[27] J.H. Solomon, M. Wisse, and M.J.Z. Hartmann. Fully interconnected, linear
control for limit cycle walking. Adaptive Behavior, 18(6):492–506, 2010.

[28] R. Téllez, C. Angulo, and D. Pardo. Evolving the walking behaviour of a 12
dof quadruped using a distributed neural architecture. Biologically Inspired
Approaches to Advanced Information Technology, 3853:5–19, 2006.

[29] Miomir Vukobratović and Branislav Borovac. Zero-moment point – thirty five
years of its life. International Journal of Humanoid Robotics, 1(01):157–173,
2004.

[30] Michael W. Whittle. Gait Analysis: An Introduction (Fourth Edition). Heidi
Harrison, 2007.

[31] Inoue Yamaguchi, Soga and Takanishi. Development of a bipedal hmanoid
robot: Control method of whole bondy cooperative dynamic biped walking.
IEEE 1999: International Conference on Robotics & Automation, 1:368–374,
1999.

53

Bibliography

54

Erkärung der Urheberschaft

Ich versichere an Eides statt, dass ich die vorliegende Bachelor Thesis selbstständig
und ohne unerlaubte Hilfe Dritter angefertigt habe. Alle Stellen, die inhaltlich oder
wörtlich aus anderen Veröffentlichungen stammen, sind kenntlich gemacht. Diese
Arbeit lag in gleicher oder ähnlicher Weise noch keiner Prüfungsbehörde vor und
wurde bisher noch nicht veröffentlicht.

Ort, Datum Unterschrift

55

Enverständniserklärung

Hiermit erkläre ich mich mit der Veröffentlichung der vorliegenden Bachelor Thesis
durch die Bibliothek des Fachbereichs Informatik an der Universität Hamburg
einverstanden.

Ort, Datum Unterschrift

57

	1 Introduction
	1.1 Motivation

	2 Related Work
	2.1 The State of the Art in Locomotion

	3 Approach
	3.1 Evolution
	3.2 Evolutionary Algorithm
	3.3 Neural Networks
	3.4 Experimental Setup
	3.5 Execution of an Experiment
	3.6 Objective

	4 Results
	4.1 Experiments
	4.2 Locomotion

	5 Discussion
	5.1 Problems Encountered in the Tools Used
	5.2 Fitness Function
	5.3 Comparing Objective and Outcome
	5.4 Analysis of the Evolutionary Progress

	6 Summary and Conclusion
	6.1 Outlook

	A Nomenclature
	B Additional Proof
	B.1 Fitness Function Formula in Detail

	C Fun Facts
	Bibliography

